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Abstract

Background

Universal coverage with long-lasting insecticidal nets (LLINs) is a primary control strategy

against Plasmodium falciparum malaria. However, its impact on the three other main spe-

cies of human malaria and lymphatic filariasis (LF), which share the same vectors in many

co-endemic areas, is not as well characterized. The recent development of multiplex anti-

body detection provides the opportunity for simultaneous evaluation of the impact of control

measures on the burden of multiple diseases.

Methodology/Principal findings

Two cross-sectional household surveys at baseline and one year after a LLIN distribution

campaign were implemented in Mecubúri and Nacala-a-Velha Districts in Nampula Prov-

ince, Mozambique. Both districts were known to be endemic for LF; both received mass

drug administration (MDA) with antifilarial drugs during the evaluation period. Access to and

use of LLINs was recorded, and household members were tested with P. falciparum rapid

diagnostic tests (RDTs). Dried blood spots were collected and analyzed for presence of anti-

bodies to three P. falciparum antigens, P. vivax MSP-119, P. ovale MSP-119, P. malariae

MSP-119, and three LF antigens. Seroconversion rates were calculated and the association

between LLIN use and post-campaign seropositivity was estimated using multivariate

regression. The campaign covered 68% (95% CI: 58–77) of the population in Nacala-a-

Velha and 46% (37–56) in Mecubúri. There was no statistically significant change in P.
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falciparum RDT positivity between the two surveys. Population seropositivity at baseline

ranged from 31–81% for the P. falciparum antigens, 3–4% for P. vivax MSP-119, 41–43%

for P. ovale MSP-119, 46–56% for P. malariae MSP-119, and 37–76% for the LF antigens.

The seroconversion rate to the LF Bm33 antigen decreased significantly in both districts.

The seroconversion rate to P. malariae MSP-119 and the LF Wb123 and Bm14 antigens

each decreased significantly in one of the two districts. Community LLIN use was associated

with a decreased risk of P. falciparum RDT positivity, P. falciparum LSA-1 seropositivity,

and P. malariae MSP-119 seropositivity, but not LF antigen seropositivity.

Conclusions/Significance

The study area noted significant declines in LF seropositivity, but these were not associated

with LLIN use. The MDA could have masked any impact of the LLINs on population LF sero-

positivity. The LLIN campaign did not reach adequately high coverage to decrease P. falcip-

arum RDT positivity, the most common measure of P. falciparum burden. However, the

significant decreases in the seroconversion rate to the P. malariae antigen, coupled with an

association between community LLIN use and individual-level decreases in seropositivity to

P. falciparum and P. malariae antigens show evidence of impact of the LLIN campaign and

highlight the utility of using multiantigenic serological approaches for measuring intervention

impact.

Author summary

Plasmodium falciparum malaria is the principal cause of illness and death in Mozambique.

However, the same mosquitoes that transmit P. falciparum parasites also transmit three

other species of malaria (P. malariae, P. ovale, and P. vivax) and the worm that causes

lymphatic filariasis. To date, we do not know how much transmission of the three other

species of malaria occurs. We also do not know if control interventions such as the distri-

bution of bed nets reduce the transmission of lymphatic filariasis and non-falciparum

malaria. To address this question, we sampled community members immediately follow-

ing and one year after a bed net distribution campaign in Mozambique. We analyzed their

blood for the presence of antibodies to four species of malaria and lymphatic filariasis.

We found that a substantial proportion of individuals had antibodies to P. falciparum,

P. malariae, P. ovale, and the worms causing lymphatic filariasis. We found much lower

rates of seropositivity to P. vivax. Individuals reporting using bed nets had a lower risk of

testing positive for P. falciparum and P. malariae antibodies. The proportion of the popu-

lation with access to and using bed nets was too low to cause a population-wide decrease

in malaria transmission. There was a significant decline in lymphatic filariasis seropositiv-

ity between the two surveys, but we could not attribute it to the bed net distribution cam-

paign. Measuring antibody levels for multiple diseases simultaneously has utility in

assessing intervention impact.

Introduction

Northern Mozambique has one of the highest rates of Plasmodium falciparum transmission

and disease burden in the world [1]. As in the rest of Mozambique, infection with P.
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falciparum malaria parasites is among the principal causes of outpatient visits, hospitalizations,

and deaths. Malaria transmission occurs year-round and P. falciparum prevalence in children

under 5 was measured to reach up to 65% in the central and northern provinces in 2015 [2].

Although P. falciparum parasites are the most deadly and common agent transmitted by

Anopheles vectors in Mozambique, anopheline mosquitoes are also responsible for transmis-

sion of three other species of human malaria–P. malariae, P. ovale, and P. vivax–as well as the

lymphatic filariasis (LF) parasite Wuchereria bancrofti. In contrast to P. falciparum, the distri-

bution and burden of non-falciparum malaria and LF in Mozambique, as in most of sub-Saha-

ran Africa, has not been well characterized. Reasons for this include poor diagnostic capability,

less severe manifestations of disease, and less attention and funding from ministries of health

and international donors. In general, P. vivax has historically been thought to be largely absent

from sub-Saharan Africa due to the lack of the Duffy coat receptor in populations originating

in West Africa [3]. Although P. ovale and P. malariae are thought to be in circulation in

Mozambique, estimating their incidence of infection has been difficult, particularly since they

are typically present at low parasite densities and are difficult to detect through slide micros-

copy, especially in the presence of a concomitant P. falciparum infection. Lymphatic filariasis

has been mapped to be most prevalent in northern and central Mozambique [4], but the highly

focal nature of LF transmission and the delay between infection and development of disease

makes surveillance of this major cause of disability difficult.

Currently, the most effective strategies for reducing the burden of P. falciparum infection

focus on vector control [5]. In Mozambique, Anopheles mosquitoes are targeted by indoor

residual spraying with insecticides and the distribution and use of long-lasting insecticidal nets

(LLINs), which, in addition to protecting the user with a physical barrier, in practice also func-

tion as human-baited insecticidal mosquito traps and can significantly reduce mosquito popu-

lations [6]. The Mozambican National Malaria Control Program (NMCP) adopted a strategy

of universal coverage with LLINs throughout the country in 2010–2011, aiming to cover each

sleeping space with an LLIN. Implementation began with a series of sub-provincial mass distri-

bution campaigns, some of which were implemented by the Ministry of Health and local

authorities, and some by non-governmental partner organizations. Although primarily used to

prevent P. falciparum infections, LLINs are known to reduce transmission of P. vivax [6] and

have been postulated to also reduce transmission of P. ovale and P. malariae [7] and the LF

parasites through their effect on the common vector [8]. Although there is some evidence of

the impact of LLINs on LF transmission [8, 9], nets have not been widely adopted as a primary

intervention against LF, with current strategies largely limited to mass drug administrations

(MDAs) of the antifilarial drugs ivermectin or diethylcarbamazine in combination with alben-

dazole [10].

As part of its monitoring and evaluation program, the Mozambican NMCP periodically

evaluates LLIN distribution campaigns. The objectives are to both monitor the operational

performance of the campaigns, as assessed through coverage and usage indicators, as well as to

measure the impact of the campaigns on malaria prevalence and estimates of transmission.

The latter is particularly important amid the rise of insecticide resistance and the potential for

diminishing effectiveness of LLINs in controlling malaria transmission. In 2013, the Mozambi-

can NMCP chose to evaluate a LLIN distribution campaign in the northern province of Nam-

pula. Besides measuring coverage and falciparum malaria prevalence, additional components

were added to the evaluation to measure the prevalences and assess the impact of the campaign

on non-falciparum Plasmodium species. A further component was included to assess the addi-

tional impact of the LLIN campaign on LF; this was complex as both districts received MDAs

for LF during the evaluation period. These additional objectives were made possible by the

recent development of multiplex serology methods that allow detection of antibodies to
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multiple antigens simultaneously [11]. It was hypothesized that this laboratory technique

could detect changes in the levels of antibodies to various malaria and LF antigens following

the campaign, indicating changes in exposure to, and hence transmission of, malaria and LF

parasites as a result of the LLIN campaign.

Methods

Study design

Two consecutive cross-sectional household surveys were carried out one year apart, with the

first, baseline survey occurring two weeks following the mass LLIN distribution campaign in

2013. Achieved coverage with LLINs was assessed during the first survey, LLIN usage was

assessed during the follow-up survey one year later in 2014, and impact of the campaign was

assessed by comparison of biological markers of infection from the first and second surveys.

Study area and population

A LLIN distribution campaign encompassing six districts of the northern province of Nam-

pula was implemented in the second half of 2013. Of the six districts, two were purposefully

chosen to be included in the survey: the coastal district of Nacala-a-Velha, and Mecubúri Dis-

trict in the interior (S1 Fig). Both districts are predominantly rural. Nacala-a-Velha is in close

proximity to the port city of Nacala-Porto, and Mecubúri, although close to the provincial cap-

ital of Nampula, is particularly difficult to access. Both districts were classified as endemic for

LF as of 2013, and began undergoing annual MDAs of albendazole and ivermectin starting

2012 in Nacala-a-Velha and starting 2013 in Mecubúri. Administrative coverage for the MDAs

in Nacala-a-Velha and Mecubúri was 70% and 114%, respectively, in 2013 and 76% and 82%

in 2014.

For the survey, twenty enumeration areas (survey clusters) in each district were chosen ran-

domly with probability proportional to size from the full list of census enumeration areas for

each district. Four clusters in Mecubúri were inaccessible and were substituted with four ran-

domly chosen replacement clusters. Immediately prior to the start of the survey, trained enu-

merators visited each selected cluster and compiled a full list of households, recording the

name of head of household and the latitude/longitude coordinates of the household. For each

cluster, the list of households was randomly sorted, and in the first survey in 2013, survey

teams visited households according to the order of the list, continuing until 16 households

were visited per cluster. In the second survey in 2014, survey teams revisited households from

2013, matching households based on the name of head of household and coordinates, and no

replacement of households was allowed. In each household, all household members present

were invited to participate in the survey. The target sample size was 1,320 individuals and 367

households per district, designed to provide 80% power to detect a 10% change between the

two surveys in the proportion of the population testing positive for P. falciparum parasites,

assuming a baseline prevalence of 43% and a design effect of 3.

Data collection

Trained teams, each composed of a national-level supervisor and a district surveyor, visited

the selected households and, after obtaining consent, administered a household questionnaire.

Surveyors collected socioeconomic data, including occupation and education of the head of

household and household ownership of goods; generated a roster of household members; enu-

merated all sleeping spaces and recorded who slept in which sleeping space; visually inspected

each sleeping space and recorded the presence and location (hanging or stored) of the bed net

Multiplex serology and bed net impact on lymphatic filariasis and malaria
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designated for that sleeping space, denoting whether or not the bed net bore the marking spe-

cific to the distribution campaign; and asked the interviewee about how often on average each

bed net was used during the wet and dry seasons. In both years, each household member,

regardless of age, present during the visit and providing written consent was administered a P.

falciparum HRP2-specific rapid diagnostic test (RDT) (SD Bioline, Yongin, Republic of

Korea), and had up to six 10 mcL spots of capillary blood collected on filter paper (TropBio,

Cellabs, Sydney, Australia). Individuals testing positive for malaria were treated by survey

teams in accordance with national treatment guidelines [12]. In 2014, the same questionnaires

and procedures were followed as in 2013, with an additional module where household mem-

bers were cross-linked to those in the first round based on name and age.

The surveys were carried out in September 2013 and October 2014 in Nacala-a-Velha and

December 2013 and November 2014 in Mecubúri, with data collection lasting three weeks for

each survey in each district.

Laboratory analysis

After collection in the field, the filter paper was dried overnight, placed into individual plastic

bags with desiccant sachets, and then refrigerated prior to shipment to central laboratories in

Maputo and later to CDC laboratories in Atlanta. Blood spots were eluted overnight at 4˚C at

a serum dilution of 1:40 (assuming 50% hematocrit) and further diluted in casein-containing

dilution buffer as previously described for a final dilution of 1:400 of serum [13, 14].

A multiplex bead platform [11] was used to measure immunoglobulin G (IgG) antibody

response to ten antigens: six malaria, three LF, and one control antigen (Strongyloides ster-
coralis) (S1 Table). The 19-kDa subunit of the merozoite surface protein 1 (MSP-119) from

each of the four main human malaria species was cloned and expressed as recombinant

Schistosoma japonicum glutathione-S-transferase (GST) fusion proteins [14–16]. A P. vivax
MSP-119 expression clone that included the carboxy-terminal hydrophobic tail sequence

was used [16]. A (NANP)5 peptide corresponding to the carboxy-terminus of the P. falcipa-
rum circumsporozoite protein (CSP) was cross-linked to GST and then coupled to a Sero-

Map bead as previously described [14]. The Pl1043 epitope from P. falciparum Liver Stage

Antigen 1 (LSA-1) [17] was synthesized and coupled to beads at a concentration of 60ug/

mL at pH 5.0. The Strongyloides stercoralis NIE antigen-GST fusion protein, GST fusion

partner with no inserted sequence, and the Brugia malayi Bm14- and Bm33-GST fusion

proteins were cloned and expressed as previously described [18–21]. W. bancrofti Wb123

antigen expressed as a GST fusion protein was a gift of T. Nutman (NIH, Bethesda, MD).

Although only W. bancrofti occurs in Africa, the serological test for the B. malayi antigens

cross-reacts with W. bancrofti.
With the exception of the P. vivax GST/MSP-119, all other antigens were coupled to Sero-

Map beads (Luminex Corp., Austin, TX) using the buffers and protein amounts previously

described [16]. The P. vivax antigen was coupled to a BioPlex COOH bead (BioRad, Hercules,

CA) using the protein amount and buffer previously specified [16]. Total IgG multiplex bead

assays were performed using the biotin-streptavidin system previously described [19, 20].

Assays included beads coated with the 10 proteins described above and an additional 31 anti-

gen-coated beads representing viral, bacterial, and parasitic diseases. Each assay plate included

a buffer-only blank and 6 control sera to ensure consistent assay performance throughout the

study. Assays were run in duplicate, and results were reported as the average of the two median

fluorescent intensity values minus the buffer-only blank value (MFI-bg). Samples (N = 8) that

had discordant result between the two runs (coefficient of variation >15%) for >4 positive

antigen responses were repeated.
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For malaria and LF antigens, cutoff values were determined using a panel of 81 presumed neg-

ative sera from adult US citizens who had no history of foreign travel. Values greater than the

mean plus 3 standard deviations of these negative control values were considered positive. For

the S. stercoralis NIE assay, a cutoff value determined by a receiver-operator characteristic curve

analysis using a different lot of coupled beads was translated to the current study bead set using a

2-fold serial dilution curve of a strong positive control sample as an inter-assay standard.

A subset of samples (20%) did not have full blood spots available; for these, partly filled

blood spots were analyzed. Comparison of average MFI-bg values from full and partial blood

spots revealed an average difference of<10%; thus, all samples were included in the final sta-

tistical analysis.

Statistical analysis

Demographic characteristics for the heads of household were tabulated, and a socioeconomic

status (SES) index was constructed and calculated for each household using a previously

described methodology [22]. Households were divided into equal quintiles based on the SES

index score. Key ownership, access, and usage indicators [23] were calculated separately for

each district. The proportion of the population testing positive for P. falciparum infection by

RDT was calculated for each district and year, stratifying by age. Estimation of coverage indi-

cators and malaria positivity was adjusted taking into account the complex sample design

using the R survey package [24]. Data were weighted by the inverse of the probability of selec-

tion, calculated as the product of the probability of selection for the cluster, the household,

and, where applicable, the individual.

For each of the antigens the mean seropositivity, defined as the percent of individuals with

MFI-bg above the predetermined threshold, was calculated for the total population and also

stratifying by ten age categories. A reversible catalytic model was fit to the seropositivity by age

data for each antigen, and the estimates for the serological conversion rate (SCR) and serologi-

cal reversion rate (SRR) per year were directly calculated from the likelihood model [25]. The

SRR was assumed to be constant for both districts and both years, but the SCR was separately

calculated for each district and each year of the survey. For each antigen, the average of the

population log MFI-bg value was calculated for each district and year, and the 95% confidence

intervals were calculated assuming a normal distribution of the log MFI-bg values. The Stron-
gyloides NIE antigen was included as a control antigen to aid in discriminating between the

effects of the LLIN and MDA campaigns, as Strongyloides transmission was presumed to be

unaffected by the LLIN campaigns but sensitive to the MDA campaigns.

Poisson regression, which allows direct estimation of the relative risk, [26] was used to model

the association between individual- and cluster-level LLIN use and ten binary biological out-

comes in individuals sampled in the second survey: RDT positivity and seropositivity for the six

malaria and three LF antigens. Each model was fit adjusting for age, sex, and household SES. Use

of LLIN was quantified on a 0 to 1 scale by a principal components analysis of data on LLIN loca-

tion and reported use during the wet and dry season, as previously described [23]. The individual

and community effects were jointly estimated by normalizing the individual-level variable by

subtracting the average cluster-level value from the individual-level variable [27].

All statistical analyses were performed in R version 3.3.2 (R Foundation for Statistical Com-

puting, Vienna, Austria).

Ethical considerations

The study was approved by the National Bioethics Committee in Mozambique. Adult partici-

pants provided written consent prior to enrollment in the study, and also provided written
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consent on behalf of child participants. CDC investigators provided technical assistance and

were not considered to be engaged in the research.

Results

A total of 282 households in Nacala-a-Velha and 300 households in Mecubúri were visited in

the first survey in 2013 (Table 1). The total number of people living in these households was

1,172 in Nacala-a-Velha and 1,443 in Mecubúri, and of these, 539 (46%) household members

in Nacala-a-Velha and 598 (41%) in Mecubúri were present and consented to have blood

drawn during the survey. In the follow up survey in 2014, 81% (228/282) of the households in

Nacala-a-Velha and 72% (217/300) in Mecubúri were revisited; a total of 578 household mem-

bers in Nacala-a-Velha and 704 in Mecubúri were sampled in the second survey.

The coverage attained by the LLIN distribution campaign was low (Table 2). The campaign

reached 80% (95% CI: 72–86) of households in Nacala-a-Velha and 54% (44–65) in Mecubúri,

but only 58% (48–67) of households in Nacala-a-Velha and 36% (29–43) in Mecubúri received

at least one LLIN per sleeping space. The proportion of the population sleeping in spaces with

an available LLIN was 68% (58–77) in Nacala-a-Velha and 46% (37–56) in Mecubúri. Usage of

any LLIN in the year following the distribution campaign was also low, with only 40% (27–55)

of the population in Nacala-a-Velha and 23% (17–30) in Mecubúri reporting having used

LLINs more than 4 times per week during the wet season, falling to 21% (14–30) and 17% (13–

22), respectively, in the dry season.

There was no statistically significant change in P. falciparum RDT positivity from 2013 in

2014 in either district with overlapping 95% confidence intervals, although the point estimates

for RDT positivity were higher in 2014 versus 2013 (Table 3). One year after the campaign,

RDT positivity in the key<5 year age group was 61% (95% CI: 44–76) in Nacala-a-Velha and

87% (76–94) in Mecubúri. Overall, RDT positivity was significantly higher in Mecubúri than

in Nacala-a-Velha.

The serological data confirm high P. falciparum transmission in both districts. Virtually all

sampled individuals were positive for P. falciparum MSP-119 antibodies, with very high anti-

body responses (S2 Fig) even in infants, indicating that individuals’ first P. falciparum infection

likely occurs early in infancy. Seropositivity for P. falciparum CSP also eventually reached satu-

ration, with close to 100% of the older age categories testing positive, but the slope of the

Table 1. Demographic data on study population of household surveys in Nacala-a-Velha and Mecubúri Districts,

Mozambique, 2013–2014.

Nacala-a-Velha Mecubúri

2013 2014 2013 2014

Households visited 282 228 300 217

Total household members 1172 908 1443 971

Total household members sampled 539 578 598 704

<5 years 124 (23%) 123 (21%) 131 (22%) 146 (21%)

5–14 years 142 (26%) 163 (28%) 142 (24%) 219 (31%)

>14 years 273 (51%) 292 (51%) 325 (54%) 339 (48%)

Female 299 (55%) 310 (54%) 326 (55%) 384 (55%)

Household members sampled both years 275 302

<5 years 45 (16%) 53 (18%)

5–14 years 87 (32%) 89 (29%)

>14 years 143 (52%) 160 (53%)

Female 159 (58%) 175 (58%)

https://doi.org/10.1371/journal.pntd.0006278.t001
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seropositivity by age curve was more gradual (Fig 1). In contrast to the other two P. falciparum
antigens, seropositivity to P. falciparum LSA-1 in general did not surpass 40% for any age

group.

For both P. falciparum CSP and P. falciparum LSA-1 antigens, the SCR was higher in Mecu-

búri than Nacala-a-Velha, consistent with the difference in RDT positivity by district. Gener-

ally, there was no statistically significant difference in SCR between the two years for these

antigens (t-test p-values ranging from 0.07 to 0.35) (Table 4). The only difference approaching

statistical significance was a slightly lower SCR for P. falciparum CSP in 2014 versus 2013 in

Nacala-a-Velha, which fell by 15% (t-test p-value 0.07).

Table 2. Coverage with LLINs immediately following a mass LLIN distribution campaign in 2013 in Nacala-a-

Velha and Mecubúri Districts, Mozambique.

Nacala-a-

Velha

Mecubúri

% (95% CI) % (95% CI)

Ownership1

Households receiving at least one campaign LLIN 80 (72–86) 54 (44–65)

Access1

Households receiving at least one LLIN per sleeping space 58 (48–67) 36 (29–43)

Sleeping spaces covered by campaign LLIN 66 (58–74) 43 (35–52)

People with access to campaign LLIN 68 (58–77) 46 (37–56)

Usage2

Sleeping spaces with a hung campaign LLIN 30 (19–43) 17 (11–23)

Sleeping spaces with a campaign LLIN reported to be used�4 times a week during

dry season3
21 (14–30) 17 (13–22)

Sleeping spaces with a campaign LLIN reported to be used�4 times a week during

wet season3
40 (27–55) 23 (17–30)

1Assessed immediately following campaign
2Assessed one year after campaign
3In preceding year, self-reported

LLIN: long-lasting insecticidal net

https://doi.org/10.1371/journal.pntd.0006278.t002

Table 3. Prevalence of P. falciparum infection as assessed by RDT immediately following and one year after an

LLIN distribution campaign in Nacala-a-Velha and Mecubúri Districts, Mozambique.

% RDT+ (95% Confidence Interval)

2013 2014

Nacala-a-Velha

All ages 44 (33–56) 48 (35–61)

<5 years 52 (36–67) 61 (44–76)

5–14 years 63 (34–87) 67 (38–89)

>14 years 30 (22–40) 30 (22–39)

Mecubúri

All ages 65 (56–74) 70 (64–76)

<5 years 67 (52–80) 87 (76–94)

5–14 years 89 (77–96) 93 (87–97)

>14 years 54 (43–65) 49 (41–56)

LLIN: long-lasting insecticidal net

RDT: rapid diagnostic test

https://doi.org/10.1371/journal.pntd.0006278.t003
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Fig 1. Seropositivity by age for antibodies to three P. falciparum antigens in community members sampled during household

surveys in Nacala-a-Velha and Mecubúri Districts, Northern Mozambique, 2013–2014. Points represent estimates and 95%

confidence intervals for seropositivity for each age category, curves represent the fit of a catalytic conversion model, and shaded areas

represent the 95% confidence intervals of model fit: blue for 2013, red for 2014, and purple for the overlap.

https://doi.org/10.1371/journal.pntd.0006278.g001
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Robust antibody responses to the three other Plasmodium species were detected in both

young and old individuals in both districts (Fig 2, S3 Fig), an indication of ongoing transmis-

sion of all three other species. After P. falciparum, the species registering the highest seroposi-

tivity was P. malariae, with 46% (95%CI: 42–50) of the population in 2013 in Nacala-a-Velha

and 56% (52–60) in Mecubúri seropositive for antibodies against P. malariae MSP-119, with a

corresponding SCR of 0.068 (0.054–0.081) in Nacala-a-Velha and 0.095 (0.077–0.11) in Mecu-

búri. Similar levels of exposure were observed for P. ovale, with the proportion of the popula-

tion with antibodies to P. ovale MSP-119 in 2013 ranging from 41% (37–45) in Nacala-a-Velha

to 43% (39–47) in Mecubúri, and an SCR estimated to be 0.12 (0.087–0.15) in Nacala-a-Velha

and 0.13 (0.093–0.16) in Mecubúri. Much lower levels of antibody positivity to P. vivax were

observed, with only 2.7% (1.5–4.5) of the population in Nacala-a-Velha and 3.9% (2.5–5.9) in

Mecubúri with detectable antibodies to P. vivax MSP-119. There was a statistically significant

difference in SCR for P. malariae between the two surveys in Nacala-a-Velha, with the estimate

for SCR for 2014 24% lower than in 2013 (t-test p-value 0.03). There was a similar reduction in

the SCR for P. ovale in Nacala-a-Velha, with a 22% reduction, but this was not statistically sig-

nificant (t-test p-value 0.096). The SCRs for P. malariae and P. ovale in Mecubúri did not show

a similar reduction, falling by only 1% and 3%, respectively, with neither antigen showing a

statistically significant difference in SCR between the two surveys (t-test p-values ranging from

0.43 to 0.46).

The absolute levels of antibody response and seropositivity by age curves for the three LF

antigens were consistent with the geographic distraction of LF (Fig 3, S4 Fig). The highest rates

of seropositivity at baseline were to the Bm33 antigen, with 67% (95%CI: 56–65) of the popula-

tion in 2013 in Nacala-a-Velha and 76% (72–79) in Mecubúri seropositive, compared to 37%

(33–41) in Nacala-a-Velha and 45% (41–49) in Mecubúri seropositive for antibodies against

Bm14, and 50% (46–54) in Nacala-a-Velha and 41% (37–45) in Mecubúri seropositive for anti-

bodies against Wb123 (Table 4). There were significant reductions in SCR for the LF antigens

between the two surveys in Nacala-a-Velha, with the SCR for Wb123 declining by 27% (chi-

square test p-value 0.011), the SCR for Bm14 declining by 17% (chi-square test p-value 0.084),

and the SCR for Bm33 declining by 22% (chi-square test p-value 0.026). In Mecubúri, the SCR

fell by 19% for Wb123 (t-test p-value 0.052), 31% for Bm14 (t-test p-value <0.001), and 59%

for Bm33 (t-test p-value<0.001).

A substantial proportion of the population in Nacala-a-Velha (58%, 95%CI: 53–62) and

Mecubúri (65%, 95%CI: 61–69) had antibodies against the control Strongyloides NIE antigen in

2013. In Nacala-a-Velha, there was no statistically significant difference in SCR (t-test p-value

0.26) or seropositivity (chi-square p-value 0.53) to the NIE antigen between the two surveys,

whereas Mecubúri witnessed statistically significant declines of 35% for the NIE SCR (t-test

p-value<0.01) and 17% for NIE seropositivity (chi-square p-value<0.01) from 2013 to 2014.

The achieved sample size was lower than the target sample size, due to a lower than

expected number of people tested per household (2.4 vs 3.6). Although there was no detected

change in overall P. falciparum RDT positivity from 2013 to 2014, both individual- and clus-

ter-level LLIN use was associated with lower risk for P. falciparum RDT positivity in the second

year after adjusting for age, sex, and SES (Table 5). The relative risk for testing RDT positive in

LLIN users compared to non-users was 0.81 (95%CI: 0.64–1.0). Moreover, the relative risk of

RDT positivity for the individuals living in clusters where everyone would be sleeping under

an LLIN was estimated to be 0.43 (0.24–0.77) compared to individuals living in clusters with

no LLIN use, demonstrating the indirect effects of LLINs, independent of individual use of

LLINs. Cluster-level LLIN use was also associated with lower risk for seropositivity to P. falcip-
arum LSA-1 and P. malariae MSP-119 antigens. In contrast, no significant protective effect

of individual- or community-level LLIN use on LF, P. vivax MSP-119, and P. ovale MSP-119
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antibody positivity was observed. Generally, RDT positivity and seropositivity to all antigens

decreased with increasing SES. P. falciparum RDT positivity was negatively associated with

age, in contrast to antibody seropositivity, which increased with age for all antigens.

Discussion

The high rates of P. falciparum RDT positivity observed in these surveys, coupled with the

high rates and age distribution of antibody levels to P. falciparum antigens, confirm holoen-

demic transmission of P. falciparum in the survey area. The levels of RDT positivity are par-

ticularly striking given that the surveys were conducted at the end of the dry season, when

transmission would be expected to be lowest. Areas of large malaria burden would benefit

most from a mass LLIN campaign. However, the coverage indicators provide evidence that the

LLIN campaign evaluated here was far from reaching its intended target of universal coverage.

Reported usage, ranging from 17% to 40%, was far removed from the 65% threshold postulated

to be necessary in providing a demonstrable community reduction in malaria incidence [28].

Nevertheless, those individuals using LLINs and living in clusters with high overall usage of

LLINs did have significantly lower risk for testing positive for P. falciparum infection by RDT,

mirroring results from previous studies of LLIN effectiveness in Mozambique [22] and con-

firming the continued effectiveness of LLINs as a malaria prevention strategy in Mozambique.

Table 4. Change in serological indicators of malaria and lymphatic filariasis exposure immediately following and one year after an LLIN distribution campaign in

Nacala-a-Velha and Mecubúri Districts, Mozambique.

Serological conversion rate log Median Fluorescent Intensity

(paired analysis)

Seroposivity

2013 2014 % change p-value 2013 2014 % change p-value 2013 2014 % change p-value

Nacala-a-Velha

P. falciparum MSP-119 antigen 2.263 2.271 0% 0.50 3.688 3.782 3% 0.208 80% 80% 0% 0.99

P. falciparum CSP antigen 0.087 0.074 -15% 0.07 3.493 3.494 0% 0.986 61% 58% -5% 0.33

P. falciparum LSA-1 antigen 0.17 0.144 -15% 0.35 2.198 2.227 1% 0.617 31% 28% -10% 0.27

P. vivax MSP-119 antigen 0.002 0.001 -38% 0.20 2.279 2.238 -2% 0.24 3% 2% -37% 0.37

P. ovale MSP-119 antigen 0.118 0.092 -22% 0.10 2.076 2.1 1% 0.632 41% 35% -14% 0.06

P. malariae MSP-119 antigen 0.068 0.051 -24% 0.03 2.689 2.641 -2% 0.556 46% 40% -14% 0.04

W. bancrofti Wb123 antigen 0.074 0.054 -27% 0.01 2.502 2.402 -4% 0.16 50% 43% -15% 0.02

B. malayi Bm14 antigen 0.031 0.026 -17% 0.08 2.282 2.191 -4% 0.323 37% 32% -12% 0.16

B. malayi Bm33 antigen 0.169 0.131 -22% 0.03 3.087 3.002 -3% 0.066 67% 61% -10% 0.04

Strongyloides NIE antigen (control) 0.125 0.114 -8% 0.26 3.265 3.198 -2% 0.278 58% 56% -4% 0.53

Mecubúri

P. falciparum MSP-119 antigen 2.382 2.151 -10% 0.42 3.764 3.741 -1% 0.729 81% 80% -2% 0.61

P. falciparum CSP antigen 0.125 0.133 7% 0.27 3.677 3.709 1% 0.631 71% 71% 0% 0.99

P. falciparum LSA-1 antigen 0.184 0.224 22% 0.32 2.342 2.324 -1% 0.773 33% 38% 15% 0.09

P. vivax MSP-119 antigen 0.003 0.001 -53% 0.07 2.331 2.211 -5% 9E-04 4% 2% -54% 0.04

P. ovale MSP-119 antigen 0.125 0.121 -3% 0.43 2.153 2.114 -2% 0.412 43% 42% -2% 0.78

P. malariae MSP-119 antigen 0.095 0.094 -1% 0.46 2.919 2.912 0% 0.918 56% 54% -3% 0.59

W. bancrofti Wb123 antigen 0.048 0.039 -19% 0.05 2.321 2.203 -5% 0.043 41% 35% -15% 0.03

B. malayi Bm14 antigen 0.044 0.03 -31% 8.E-04 2.438 2.289 -6% 0.12 45% 34% -23% 2.E-04

B. malayi Bm33 antigen 0.246 0.101 -59% 2.E-09 3.146 2.885 -8% 9E-09 76% 55% -27% 1.E-13

Strongyloides NIE antigen (control) 0.163 0.105 -35% 9.E-04 3.43 3.242 -5% 0.005 65% 54% -17% 8.E-05

P-values for differences in serological conversion rate were derived with a normal distribution test, log Median Fluorescent Intensity with a two-sample t-test, and

seropositivity with Pearson’s chi-squared test

https://doi.org/10.1371/journal.pntd.0006278.t004
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Fig 2. Seropositivity by age for antibodies to P. ovale, P. malaria, and P. vivax MSP-119 antigens in community members sampled

during household surveys in Nacala-a-Velha and Mecubúri Districts, Northern Mozambique, 2013–2014. Points represent

estimates and 95% confidence intervals for seropositivity for each age category, curves represent the fit of a catalytic conversion model,

and shaded areas represent the 95% confidence intervals of model fit: blue for 2013, red for 2014, and purple for the overlap.

https://doi.org/10.1371/journal.pntd.0006278.g002
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Fig 3. Seropositivity by age for antibodies to three lymphatic filariasis antigens and the Strongyloides NIE (control) antigen in

community members sampled during household surveys in Nacala-a-Velha and Mecubúri Districts, Northern Mozambique,

2013–2014. Points represent estimates and 95% confidence intervals for seropositivity for each age category, curves represent the fit of a

catalytic conversion model, and shaded areas represent the 95% confidence intervals of model fit: blue for 2013, red for 2014, and purple

for the overlap.

https://doi.org/10.1371/journal.pntd.0006278.g003
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This study highlights the added benefit of simultaneously measuring seropositivity to mul-

tiple antigens to estimate P. falciparum transmission intensity. The results show that not all

antigens are consistently informative in this setting. For example, the P. falciparum MSP-119

antigen, which to date has been one of the standard antigens used to assess population-level

P. falciparum exposure [25, 29] provides little information on changes in P. falciparum inten-

sity in a setting of such high transmission as northern Mozambique. The transmission inten-

sity is such that virtually all sampled individuals regardless of age had antibodies to MSP-119,

evidence that the first P. falciparum infection likely occurs in early infancy. However, the two

other P. falciparum antigens included in the assay, CSP and LSA-1, generated seroprevalence

curves with increasing likelihood of transitioning to seropositive with increasing age. Both

antigens are thought to be less immunogenic than MSP-119, and the data presented here sug-

gest that repeated P. falciparum infections throughout life are needed to generate a consistently

Table 5. Relative risk for malaria and lymphatic filariasis outcomes one year after an LLIN distribution campaign in Nacala-a-Velha and Mecubúri Districts,

Mozambique, as a function of demographic, socioeconomic, and bed net usage factors.

Antibody seropositivity in 2014

Malaria RDT

+ in 2014

P. falciparum
MSP-119

P. falciparum
CSP

P. falciparum
LSA-1

P. vivax
MSP-119

P. ovale
MSP-119

P. malariae
MSP-119

W. bancrofti
Wb123

B. malayi
Bm14

B. malayi
Bm33

Age

<5 yrs Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

5–10 yrs 1.1 (0.92–1.3) 0.99 (0.8–1.2) 2.1 (1.5–3) 1.1 (0.81–1.6) 2.8 (0.29–

27)

1.6 (1.2–

2.3)

2.2 (1.6–3.2) 1.0 (0.68–1.6) 2.7 (1.2–

6.1)

1.5 (1.1–

2.1)

10–15 yrs 1.1 (0.85–1.3) 1.1 (0.84–1.4) 3.4 (2.4–4.8) 1 (0.68–1.6) 4.3 (0.39–

48)

1.6 (1.1–

2.4)

2.7 (1.8–4) 1.9 (1.2–2.9) 8.9 (4.1–

19)

2.1 (1.5–

2.9)

15–20 yrs 0.82 (0.61–

1.1)

1.2 (0.91–1.6) 4.2 (2.9–6.1) 0.9 (0.52–1.6) 1e-06

(0-Inf)

2.0 (1.3–

3.1)

2.8 (1.8–4.4) 3.6 (2.3–5.6) 18 (8.4–

39)

3.0 (2.1–

4.3)

20–30 yrs 0.56 (0.43–

0.73)

1.2 (0.99–1.6) 4.2 (3.1–5.8) 1.6 (1.1–2.3) 7.9 (0.91–

67)

1.7 (1.2–

2.5)

3.3 (2.3–4.7) 3.5 (2.4–5.2) 15 (7.5–

32)

2.6 (1.9–

3.5)

30–40 yrs 0.46 (0.34–

0.63)

1.3 (1–1.7) 4.4 (3.2–6.2) 1.5 (1.1–2.2) 7.2 (0.8–

65)

1.9 (1.3–

2.8)

3.6 (2.5–5.2) 3.8 (2.6–5.6) 17 (8.4–

36)

2.7 (2–3.6)

>40 yrs 0.31 (0.23–

0.42)

1.3 (1.1–1.7) 4.5 (3.3–6.2) 1.8 (1.3–2.5) 6.8 (0.79–

59)

2.5 (1.8–

3.4)

4.2 (3–5.9) 3.9 (2.7–5.6) 20 (9.7–

40)

2.8 (2.1–

3.7)

Sex

Female Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Male 1.0 (0.9–1.2) 0.87 (0.76–

0.99)

0.98 (0.85–

1.1)

0.92 (0.75–1.1) 1.4 (0.59–

3.5)

0.8 (0.66–

0.97)

1.0 (0.84–1.2) 1.2 (1–1.5) 1.3 (1–1.6) 0.95

(0.81–1.1)

SES quintile

1st (Poorest) Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

2nd 0.94 (0.75–

1.2)

0.96 (0.77–1.2) 1.1 (0.84–1.4) 1.1 (0.82–1.6) 5.7 (0.63–

51)

1.2 (0.89–

1.7)

1.1 (0.86–1.5) 0.94 (0.68–

1.3)

0.80

(0.57–1.1)

1.0 (0.77–

1.3)

3rd 0.90 (0.72–

1.1)

0.99 (0.8–1.2) 0.99 (0.78–

1.2)

0.94 (0.68–1.3) 3.5 (0.36–

34)

1.3 (0.94–

1.7)

1 (0.78–1.3) 0.93 (0.7–1.2) 0.78

(0.57–1.1)

0.98

(0.76–1.2)

4th 0.87 (0.7–1.1) 0.94 (0.76–1.2) 0.96 (0.76–

1.2)

0.89 (0.64–1.2) 7.9 (0.95–

65)

1.1 (0.79–

1.5)

0.92 (0.71–

1.2)

0.91 (0.68–

1.2)

0.77

(0.57–1.1)

0.96

(0.75–1.2)

5th (Richest) 0.80 (0.64–

0.99)

0.95 (0.78–1.2) 0.96 (0.77–

1.2)

1.0 (0.76–1.4) 4.6 (0.52–

41)

0.99

(0.73–1.3)

0.87 (0.66–

1.1)

0.8 (0.59–1.1) 0.71

(0.52–

0.97)

0.98

(0.77–1.3)

LLIN Use

(individual)

0.81 (0.64–

1.0)

0.99 (0.82–1.2) 0.98 (0.79–

1.2)

1.1 (0.82–1.5) 0.85 (0.23–

3.1)

1.0 (0.8–

1.4)

0.98 (0.76–

1.3)

1.1 (0.83–1.4) 0.97

(0.73–1.3)

1.0 (0.81–

1.3)

LLIN Use

(community)

0.43 (0.24–

0.77)

1.0 (0.6–1.7) 0.71 (0.39–

1.3)

0.34 (0.15–

0.79)

0.22

(0.0062–8)

0.67

(0.31–1.5)

0.4 (0.2–0.81) 2.0 (0.95–4.4) 0.98

(0.43–2.3)

3.7 (2–6.9)

RDT: rapid diagnostic test; SES: socioeconomic status; LLIN: long-lasting insecticidal net

https://doi.org/10.1371/journal.pntd.0006278.t005
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high antibody level to each antigen. Due to the slower acquisition of antibodies to these two

antigens, the seroprevalence by age data were informative, allowing differentiation between

the higher transmission in Mecubúri versus Nacala-a-Velha, an observation also seen in the

RDT positivity data. Additionally, P. falciparum LSA-1 seropositivity was lower in LLIN users,

further evidence of the protective effect of LLINs against P. falciparum infection.

In addition to the two districts being a setting of very high P. falciparum transmission, the

populations in both districts showed substantial serological responses to P. ovale and P. malar-
iae antigens. A small but non-zero proportion of the population showed evidence of exposure

to P. vivax, consistent with the results of a 2015 household survey which showed a national

0.2% P. vivax prevalence in children under 5 years of age [2]. MSP-119 antigen competition

studies have not indicated antibody cross-reactivity in most individuals [14], and species-spe-

cific MSP-119 antibody responses were common even among patients who had high responses

to multiple malaria MSP-119 antigens. Although the MSP-119 antigens from P. vivax and P. fal-
ciparum share 51% identity at the amino acid level, some of the conserved residues are cyste-

ines and other hydrophobic amino acids that are unlikely to be exposed to the immune

response [30]. Bousema et al. used the two MSP-119 antigens in ELISA studies of sera from a

population living in a region endemic for both parasites and did not observe any correlation

between the P. vivax and P. falciparum antibody responses [31]. In a separate study, 79% of

women who were positive for antibodies to malaria reacted with the MSP-119 antigen from

only one species [16]. Thus, it is unlikely that the observed antibody responses to P. malariae
and P. ovale antigens can be solely attributed to assay cross-reactivity.

Although subject to many limitations, the SCR at its most basic definition is a measure of

incidence, the annual rate at which individuals acquire antibodies to a certain antigen [32].

Taken at face value, the SCRs estimated for P. ovale MSP-119 and P. malariae MSP-119 in these

two districts in 2013 suggest an annual incidence of P. ovale infection of 125/1000 in Nacala-a-

Velha and 133/1000 in Mecubúri, and an annual incidence of P. malariae infection of 70/1000

in Nacala-a-Velha and 100/1000 in Mecubúri. This magnitude of incidence would elevate P.

ovale and P. malariae as major contributors to malaria burden in northern Mozambique.

In contrast to P. falciparum, there was a statistically significant population-level decrease in

P. malariae seropositivity and a borderline significant decrease in P. ovale seropositivity from

2013 to 2014 in one of the districts. Since LLIN use was associated with lower post-campaign

risk of testing positive for P. malariae antibodies, there is evidence that the LLIN campaign, at

least in Nacala-a-Velha where coverage was higher, might have had an impact on decreased P.

malariae transmission. The fact that there were detectable changes in seroprevalence and dis-

tribution of P. ovale and P. malariae markers and no change in P. falciparum might be due to

the differences in magnitude of transmission intensity. One hypothesis is that with such high

levels of P. falciparum transmission, there would need to be a much larger decrease in vectorial

capacity to result in a detectable change in incidence, whereas non-falciparum transmission

might be low enough to be sensitive to smaller changes in vectorial capacity.

In both districts there was evidence of significant declines in LF transmission between 2013

and 2014, as seen by decreases in both the SCR and overall proportion of the population sero-

positive for the LF antigens. The results are robust as they hold across all three different LF

antigens included in the assay. However, attributing this change to the LLIN distribution cam-

paign is hampered by the concurrent MDAs of antiparasitic drugs in both districts. Ivermectin

is effective against LF microfilariae, in addition to a postulated killing effect on mosquitos feed-

ing on individuals treated with ivermectin, and albendazole kills adult worms. Together, the

two-drug combination could be expected to influence antibody levels through its effect on

transmission and worm load. In Mecubúri, the substantial declines in SCR and proportion of

the population seropositive for the NIE Strongyloides antigen, which should be influenced by
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the MDAs but not by the LLIN campaign, suggest that there was high enough coverage from

the antiparasitic MDAs to reduce LF transmission. In Nacala-a-Velha, however, there was no

significant difference in NIE Strongyloides SCR and seropositivity between the two surveys,

and thus the population-level declines in SCR and seropositivity to LF antigens could be due

to the LLIN distribution campaign. Overall, there was no association between individual or

community LLIN use and seropositivity to LF antigens. Given the confounding due to the con-

current use of MDAs in the survey districts, this result cannot be interpreted as evidence of no

effect, as the effect might have been masked by the antifilarial MDAs.

Several aspects of the study’s design prevent direct inference of a causal relationship between

the LLIN distribution campaign and the observed changes in malaria positivity and serological

outcomes for malaria and LF. The lack of a control group and the MDA campaigns in the inter-

vening year hamper direct estimation of the impact of the LLIN campaign. In addition, the low

coverage and usage resulting from the LLIN campaign and the lower-than-expected sample size

limited the ability of the study to assess the impact of LLINs on malaria and LF transmission.

Additionally, as IgG against some antigens is known to persist for years following infection [33],

more elapsed time may be needed to detect a substantial change in serological metrics following a

successful intervention. The extraordinarily high rates of P. falciparum transmission on the back-

drop of low LLIN coverage argue for follow-up campaigns in these two districts, both of which

will take part in the nationwide universal coverage campaign in Mozambique launched in 2016.

Similar evaluations are recommended to evaluate coverage and usage of future campaigns. Finally,

the results presented here provide evidence for the enhanced utility of the multi-antigenic and

multi-disease assay for quantifying baseline exposure to the non-falciparum malarias and LF, and

evaluating the impact of vector control intervention campaigns on these diseases.
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Health Authority, Mecubúri District Health Authority, Dr. Juliette Morgan, and Sonia

Pelletreau.

Disclaimer

Use of trade names is for identification only and does not imply endorsement by the Public

Health Service or by the U.S. Department of Health and Human Services. The findings and

conclusions in this report are those of the authors and do not necessarily represent the official

position of the Centers for Disease Control and Prevention.

Author Contributions

Conceptualization: Mateusz M. Plucinski, Baltazar Candrinho, Geraldo Chambe, Graça Mat-

sinhe, Timothy Doyle, James Colborn, Abu Saifodine, Patrick Lammie, Jeffrey W. Priest.

Formal analysis: Mateusz M. Plucinski, João Muchanga, Jeffrey W. Priest.

Funding acquisition: James Colborn, Abu Saifodine, Patrick Lammie.

Investigation: Geraldo Chambe, João Muchanga, Olinda Muguande, Guidion Mathe, Eric

Rogier, Jeffrey W. Priest.

Methodology: Mateusz M. Plucinski.

Project administration: Geraldo Chambe, João Muchanga, Olinda Muguande.

Supervision: Geraldo Chambe, Guidion Mathe, Timothy Doyle, James Colborn.

Writing – original draft: Mateusz M. Plucinski, Baltazar Candrinho, Jeffrey W. Priest.

Writing – review & editing: Mateusz M. Plucinski, Baltazar Candrinho, Geraldo Chambe,

João Muchanga, Timothy Doyle, Rose Zulliger, James Colborn, Abu Saifodine, Patrick

Lammie.

References
1. Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control

on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015; 526(7572):207–11. https://

doi.org/10.1038/nature15535 PMID: 26375008

2. Mozambique Ministry of Health. Immunization, Malaria, and HIV/AIDS Survey. 2015.

3. Miller LH, Mason SJ, Dvorak JA, McGinniss MH, Rothman IK. Erythrocyte receptors for (Plasmodium

knowlesi) malaria: Duffy blood group determinants. Science. 1975; 189(4202):561–3. PMID: 1145213

4. Manhenje I, Galán-Puchades MT, Fuentes MV. Socio-environmental variables and transmission risk of

lymphatic filariasis in central and northern Mozambique. Geospatial health. 2013; 7(2):391–8. https://

doi.org/10.4081/gh.2013.96 PMID: 23733300

5. World Health Organization. World Malaria Report. 2016.

6. Lengeler C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst

Rev. 2004; 2(2).

7. Gosling RD, Hsiang MS. Malaria and severe anemia: thinking beyond Plasmodium falciparum. PLoS

Med. 2013; 10(12):e1001576. https://doi.org/10.1371/journal.pmed.1001576 PMID: 24358032

Multiplex serology and bed net impact on lymphatic filariasis and malaria

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006278 February 14, 2018 17 / 19

https://doi.org/10.1038/nature15535
https://doi.org/10.1038/nature15535
http://www.ncbi.nlm.nih.gov/pubmed/26375008
http://www.ncbi.nlm.nih.gov/pubmed/1145213
https://doi.org/10.4081/gh.2013.96
https://doi.org/10.4081/gh.2013.96
http://www.ncbi.nlm.nih.gov/pubmed/23733300
https://doi.org/10.1371/journal.pmed.1001576
http://www.ncbi.nlm.nih.gov/pubmed/24358032
https://doi.org/10.1371/journal.pntd.0006278


8. Bockarie MJ, Pedersen EM, White GB, Michael E. Role of vector control in the global program to elimi-

nate lymphatic filariasis. Annual review of entomology. 2009; 54:469–87. https://doi.org/10.1146/

annurev.ento.54.110807.090626 PMID: 18798707

9. Reimer LJ, Thomsen EK, Tisch DJ, Henry-Halldin CN, Zimmerman PA, Baea ME, et al. Insecticidal bed

nets and filariasis transmission in Papua New Guinea. New England Journal of Medicine. 2013; 369

(8):745–53. https://doi.org/10.1056/NEJMoa1207594 PMID: 23964936

10. World Health Organization. Global programme to eliminate lymphatic filariasis: progress report, 2014.

Weekly epidemiological record. 2015; 90:489–504. PMID: 26387149

11. Lammie PJ, Moss DM, Goodhew EB, Hamlin K, Krolewiecki A, West SK, et al. Development of a new

platform for neglected tropical disease surveillance. International journal for parasitology. 2012; 42

(9):797–800. https://doi.org/10.1016/j.ijpara.2012.07.002 PMID: 22846784

12. Ministério da Saúde. Normas de tratamento da malária em Moçambique. Maputo. 2011.
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